[1] Christian Wolff. Uwb-radar – figure 1: The uwb-radar transmits in a wide spectrum with
very low power. Available at
20Radar.en.html, jul 2015.
[2] Claus Limbodal. A spatial rake receiver for real-time uwb-ir applications. Master’s thesis,
[3] Quanhua Liu, Yazhou Wang, and A.E. Fathy. Towards low cost, high speed data sampling
module for multifunctional real-time uwb radar. Aerospace and Electronic Systems, IEEE
Transactions on, 49(2):1301–1316, APRIL 2013.
[4] Hans G. Schantz. Three centuries of uwb antenna development. In Three centuries of UWB
antenna development, jan 2012.
[5] G.B. Giannakis. Ultra-wideband communications: an idea whose time has come. In Signal
Processing Advances in Wireless Communications, 2003. SPAWC 2003. 4th IEEE Workshop
on, June 2003.
[6] Federal Communications Commission. Revision of part 15 of the commission’s rules regarding
ultra-wideband transmission systems. FIRST REPORT AND ORDER ET Docket
98-153, FCC, Federal Communications Commission, Washington, D.C. 20554, mar 2002.
[7] European Telecommunications Standards Institute. Electromagnetic compatibility and radio
spectrum matters (erm); short range devices (srd) using ultra wide band technology (uwb)
for communications purposes. Harmonized European Standard ETSI EN 302 065-1, ETSI,
jun 2013.
[8] M. Strackx, E. D’Agostino, P. Leroux, and P. Reynaert. Direct rf subsampling receivers
enabling impulse-based uwb signals for breast cancer detection. Circuits and Systems II:
Express Briefs, IEEE Transactions on, 62(2):144–148, Feb 2015.
[9] C. Le, T. Dogaru, Lam Nguyen, and M.A. Ressler. Ultrawideband (uwb) radar imaging of
building interior: Measurements and predictions. Geoscience and Remote Sensing, IEEE
Transactions on, 47(5):1409–1420, May 2009.
[10] T.K. Kumar and P.K. Kumar. Uwb impulse radar for three dimensional through-the-wall
radar imaging. In Microwaves, Communications, Antennas and Electronics Systems (COMCAS),
2011 IEEE International Conference on, pages 1–5, Nov 2011.
[11] D. Agarwal, C.R. Anderson, and P.M. Athanas. An 8 ghz ultra wideband transceiver prototyping
testbed. In Rapid System Prototyping, 2005. (RSP 2005). The 16th IEEE International
[12] P. Michalis, P. Ioannis, and M. Dimitrios. Design and implementation of an uwb digital transmitter
based on the multiband ofdm physical layer proposal. In Rapid System Prototyping,
2009. RSP ’09. IEEE/IFIP International Symposium on, pages 166–169, June 2009.
[13] Talat Karim Minhas Md. Iqbal Hossain. Distance measurement using ultra wideband. Masters
thesis, School of Technology and Health, Kungliga Tekniska Högskolan, feb 2012.
[14] Y. Salih-Alj, C. Despins, and S. Affes. Design considerations for an uwb computationallyefficient
fast acquisition system for indoor line-of-sight ranging applications. Wireless Communications,
IEEE Transactions on, 10(8):2776–2784, August 2011.
[15] A. Oncu, B.B.M. Badalawa, and M. Fujishima. 22 ndash;29 ghz ultra-wideband cmos
pulse generator for short-range radar applications. Solid-State Circuits, IEEE Journal of,
42(7):1464–1471, July 2007.
[16] MattWelborn and Kai Siwiak. Ultra-wideband tutorial. In MatthewWelborn and Kai Siwiak,
editors, Ultra-Wideband Tutorial, IEEE P802.15Working Group for Wireless Personal Area
Networks (WPANs). XtremeSpectrum and TimeDomain, mar 2002.
[17] S. Sudalaiyandi, H.A. Hjortland, Tuan-Anh Vu, O. Naess, and T.S. Lande. Continuous-time
high-precision ir-uwb ranging-system in 90 nm cmos. In Solid State Circuits Conference
(A-SSCC), 2012 IEEE Asian, pages 349–352, Nov 2012.
[18] Tor Sverre Lande. Impulse-based ultra-wide-band (uwb) radio systems and applications.
Available at, jun 2008.
[19] H.A. Hjortland, D.T.Wisland, T.S. Lande, C. Limbodal, and K. Meisal. Cmos impulse radar.
In Norchip Conference, 2006. 24th, pages 75–79, Nov 2006.
[20] H.A. Hjortland, D.T. Wisland, T.S. Lande, C. Limbodal, and K. Meisal. Thresholded samplers
for uwb impulse radar. In Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, pages 1210–1213, May 2007.
[21] Piljae Park, Sungdo Kim, Sungchul Woo, and Cheonsoo Kim. A high-resolution shortrange
cmos impulse radar for human walk tracking. In Radio Frequency Integrated Circuits
Symposium (RFIC), 2013 IEEE, pages 9–12, June 2013.
[22] S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T.S. Lande, and S.-E. Hamran. Time-lapse
imaging of human heartbeats using uwb radar. In Biomedical Circuits and Systems Conference
(BioCAS), 2013 IEEE, pages 142–145, Oct 2013.
[23] S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T.S. Lande, and S.-E. Hamran. Time-lapse
imaging of human heart motion with switched array uwb radar. Biomedical Circuits and
Systems, IEEE Transactions on, 8(5):704–715, Oct 2014.
[24] H.A. Hjortland and T.S. Lande. Ctbv integrated impulse radio design for biomedical applications.
Biomedical Circuits and Systems, IEEE Transactions on, 3(2):79–88, April 2009.
[25] Ø. Aardal, S.-E. Hamran, T. Berger, J. Hammerstad, and T.S. Lande. Radar cross section
of the human heartbeat and respiration in the 500mhz to 3ghz band. In Radio and Wireless
Symposium (RWS), 2011 IEEE, pages 422–425, Jan 2011.
[26] O. Aardal, Y. Paichard, S. Brovoll, T. Berger, T.S. Lande, and S.-E. Hamran. Physical working
principles of medical radar. Biomedical Engineering, IEEE Transactions on, 60(4):1142–
1149, April 2013.
[27] K. Meisal, C. Limbodal, T.S. Lande, and D.T. Wisland. Cmos impulse radio receiver frontend.
In NORCHIP Conference, 2005. 23rd, pages 133–136, Nov 2005.
[28] O. Dahl, H.A. Hjortland, T.S. Lande, and D.T. Wisland. Close range impulse radio beamformers.
In Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on, pages
205–209, Sept 2009.
[29] E. Bakken, T.S. Lande, and S. Holm. Real time uwb radar imaging using single chip
transceivers. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on,
pages 2461–2464, June 2014.
[30] Kin Keung Lee, H.A. Hjortland, and T.S. Lande. Ir-uwb technology on next generation rfid
systems. In NORCHIP, 2011, pages 1–4, Nov 2011.
[31] Tuan Anh Vu, H.A. Hjortland, O. Nass, and T.S. Lande. A 3-5 ghz ir-uwb receiver front-end
for wireless sensor networks. In Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on, pages 2380–2383, May 2013.
[32] D. Genschow. A time to digital converter for use in ultra wide band radar sensor nodes. In
Wireless Sensors and Sensor Networks (WiSNet), 2015 IEEE Topical Conference on, pages
38–40, Jan 2015.
[33] Li Yueli, Yan Shaoshi, Zhu Guofu, Li Jiangyang, and Zhou Zhimin. Ultra wide band synthetic
aperture radar real time processing with a subaperture nonlinear chirp scaling algorithm.
In Synthetic Aperture Radar (APSAR), 2011 3rd International Asia-Pacific Conference
on, pages 1–4, Sept 2011.
[34] D. Oloumi, M.I. Pettersson, P. Mousavi, and K. Rambabu. Imaging of oil-well perforations
using uwb synthetic aperture radar. Geoscience and Remote Sensing, IEEE Transactions on,
53(8):4510–4520, Aug 2015.
[35] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher. Vital signs monitoring with a
uwb radar based on a correlation receiver. In Antennas and Propagation (EuCAP), 2010
Proceedings of the Fourth European Conference on, pages 1–5, April 2010.
[36] X.Y. Wang, R.K. Dokania, and A.B. Apsel. Crystal-less duty-cycled-when-active ir-uwb
transceivers. In Electronics, Circuits and Systems (ICECS), 2014 21st IEEE International
Conference on, pages 850–853, Dec 2014.
[37] Jun Wang, Yinhua Rui, Zhizhen Huang, and Weidong Wang. Peak detection ultra-wideband
transceiver using tunnel backward diode. In Millimeter Waves, 2008. GSMM 2008. Global
Symposium on, pages 59–62, April 2008.
[38] K.R. Duncan and R. Etienne-Cummings. A low-cost cots uwb transceiver for biological
applications achieves 50 mbps. In Biomedical Circuits and Systems Conference (BioCAS),
2011 IEEE, pages 169–172, Nov 2011.
[39] Altera. High-Speed Differential Interfaces in Cyclone II Devices, feb 2007.
[40] Ying Tang and Yue Ruan. Research on a novel synchronization and detection scheme used in
energy detection uwb receiver. In Communications and Information Technologies (ISCIT),
2011 11th International Symposium on, pages 109–113, Oct 2011.